Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Cancer ; 21(1): 596, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030642

RESUMO

BACKGROUND: Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. METHODS: Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). RESULTS: We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. CONCLUSIONS: Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells.


Assuntos
Aurora Quinase C/metabolismo , Neoplasias da Mama/patologia , Inibidor de NF-kappaB alfa/metabolismo , Necroptose , Sítios de Ligação/genética , Feminino , Humanos , Células MCF-7 , Mutagênese Sítio-Dirigida , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/isolamento & purificação , NF-kappa B/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
3.
Oncotarget ; 8(41): 69691-69708, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050234

RESUMO

The Aurora kinases, Aurora A (AURKA), Aurora B (AURKB), and Aurora C (AURKC), are serine/threonine kinases required for the control of mitosis (AURKA and AURKB) or meiosis (AURKC). Several Aurora kinase inhibitors are being investigated as novel anticancer therapeutics. Recent studies demonstrated that AURKC activation contributes to breast cancer cell transformation. Therefore, AURKC is both a promising marker and therapeutic target for breast cancer; however, its signaling network has not been fully characterized. Using translocation-based cellular assays, we identified IκBα as a binding partner of AURKC, and found that AURKC phosphorylates IκBα at Ser32, thereby activating it. In silico modeling and computational analyses revealed a small-molecule inhibitor (AKCI) that blocked the AURKC-IκBα interaction and exerted antitumor activity in MDA-MB-231 breast cancer cells. Specifically, AKCI induced G2/M cell-cycle arrest through modulation of the p53/p21/CDC2/cyclin B1 pathways. In addition, the drug significantly inhibited MDA-MB-231 cell migration and invasion, as well as decreasing colony formation and tumor growth. Via its interaction with IκBα, AURKC indirectly induced NF-κB activation; accordingly, AKCI decreased PMA-induced activation of NF-κB. Thus, the small-molecule inhibitor AKCI represents a first step towards developing targeted inhibitors of AURKC protein binding, which may lead to further advances in the treatment of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...